Newcastle disease virus infection promotes Bax redistribution to mitochondria and cell death in HeLa cells.

نویسندگان

  • Aidin Molouki
  • Yi-Te Hsu
  • Fatemeh Jahanshiri
  • Rozita Rosli
  • Khatijah Yusoff
چکیده

BACKGROUND/AIMS Newcastle disease virus (NDV) is an avian paramyxovirus that has gained a lot of interest in cancer viro-therapeutic applications because of its ability to selectively induce apoptosis in human cancer cells. However, the underlying mechanisms by which NDV induces apoptosis in human cancer cells are still not entirely understood. METHODS In this study we examined the effect of a Malaysian velogenic strain of NDV, known as AF2240, on some elements of the intrinsic pathway of apoptosis. RESULTS We show that NDV infection leads to conformational change of Bax protein. This is associated with the translocation of Bax from the cytoplasm to mitochondria and the release of cytochrome c into the cytoplasm. Interestingly, the level of Bcl-2 protein was not affected by NDV treatment. CONCLUSION We have shown that Bax conformational change and subcellular distribution is involved in the intrinsic pathway of apoptosis induced by NDV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIP1 is a central signaling protein in regulation of TNF-α/TRAIL mediated apoptosis and necroptosis during Newcastle disease virus infection

Newcastle disease virus (NDV) is an oncolytic virus which selectively replicates in tumor cells and exerts anti-tumor cytotoxic activity by promoting cell death. In this study, we focus on characterization of the underlying mechanisms of NDV-induced cell death in HeLa cells. We find that NDV Herts/33 strain triggers both extrinsic and intrinsic apoptosis at late infection times. The activation ...

متن کامل

LncRNA Miat Promotes Proliferation of Cervical Cancer Cells and Acts as an Anti-apoptotic Factor

There are a sub-population of cells in tumor tissues known as cancer stem cells (CSCs) which have similar features with stem cells, including self-renewal and differentiation capacity. Recently, it was established that not only stem cells factors such as Oct4, but also ES-associated lncRNAs are contributing to various regulatory aspects of CSCs. Myocardial infarction associated transcript (MIAT...

متن کامل

Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death.

Many viruses encode proteins that inhibit the induction of programmed cell death at the mitochondrial checkpoint. Murine cytomegalovirus (MCMV) encodes the m38.5 protein, which localizes to mitochondria and protects human HeLa cells and fibroblasts from apoptosis triggered by proteasome inhibitors but not from Fas-induced apoptosis. However, the ability of this protein to suppress the apoptosis...

متن کامل

Coxsackievirus B3 protease 3C induces cell death in eukaryotic cells

Abstract: Coxsackievirus B3 (CVB3) is the most common agent known to cause viral myocarditis. The viral genome encodes a single polyprotein that is cleaved to produce several proteins by virally encoded proteases. Most of this proteolytic processing is catalyzed by a cysteine protease called 3C. The 3C protease plays major role in viral replication and cellular damage. To understand the mecha...

متن کامل

Poliovirus induces Bax-dependent cell death mediated by c-Jun NH2-terminal kinase.

Poliovirus (PV) is the causal agent of paralytic poliomyelitis, a disease that involves the destruction of motor neurons associated with PV replication. In PV-infected mice, motor neurons die through an apoptotic process. However, mechanisms by which PV induces cell death in neuronal cells remain unclear. Here, we demonstrate that PV infection of neuronal IMR5 cells induces cytochrome c release...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Intervirology

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 2010